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INTRODUCTION 

A current trend in commutative algebra has been to characterize proper- 
ties of prime divisors in the completion of a local ring in terms of the 
independence of various elements and sequences in the local ring itself. For 
instance, in [2] Bruns characterizes the minimal depth of prime divisors of 
zero in the completion R* of a local ring (R, M) as the largest number of 
elements which are &P-independent, for n sufficiently large. More recently, 
the notion of asymptotic sequence has been used to characterize the 
minimal depth of minimal prime divisors of zero in R*. This was done by 
the author in [S] and L. J. Ratliff, Jr. in [19]. (Elements x, ,..., xd form an 
asymptotic sequence if x,+, P U {PI PE 2*(x,,..., x,)}, where A*(Z) = 
Ass R/I” large n, and r” is the integral closure of I”.) Using this result as a 
starting point, a full-blown theory of asymptotic grade has been developed 
in [19] and [7]. 

In this paper we seek a similar characterization of the minimal depth of 
all prime divisors of zero in R*. In particular, we introduce the set 

a*(Z)= 0 (A*(J)IPRc JRcZ”R, somen) 

and show that PEA”*(Z) if and only if there exists YE Spec T such that 
(T,++)* has a depth one prime divisor of zero, and Pn R = P. Here 
A *(J) = Ass R/J”, large n and T = R[Zt] is the Rees ring of R with respect 
to Z, t an indeterminate. We then define the notion of asymptotic R- 
sequence: Elements X, ,..., xd form an asymptotic R-sequence if and only if 
x;+,$U {PI ~A”*(xl,..., xi)}, 1 < id d - 1. We prove in Theorem 3.4 that 
the length of any maximal asymptotic R-sequence characterizes the 
minimal depth among prime divisors of zero in R*. It follows that R is 
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unmixed if and only if each system of parameters forms an asymptotic R- 
sequence. A key point in our proofs is the finite generation of the ring 
S=C,z? (M) t” over the Rees ring T, for various ideals I 
(In: (M) = un (p: M’)). We accomplish this by showing that S is con- 
tained in certain ideal transforms over T, which themselves are finite. This 
relates to a problem posed by P. Schenzel at the end of [21]. He asks if R 
is unmixed, for which ideals I does it hold that S is a finite T-module? In 
Theorem 4.1 we show that R is unmixed if and only if S is a finite T- 

module for all ideals I with analytic spread less than dim R. 

1. NOTATION AND PRELIMINARIES 

In this section we record some of the standard facts and terminology that 
will be used throughout this paper. For definitions and facts from 
Noetherian ring theory not listed below, consult Nagata’s well-known text 
[lOI. 

Throughout R will denote a Noetherian commutative ring. In case R is 
local with maximal ideal M, we shall write R* for the completion of R in 
the M-adic topology. Recall the following definitions: 

1.1. Let R be a local ring. R is said to be unmixed (respectively, quasi- 
unmixed) in case dim R*/Q* = dim R for each prime divisor of zero 
Q* c R* (respectively, minimal prime divisor of zero). 

1.2. Given an ideal Zg R, we have the following sets of “asymptotic 
prime divisors of I”: 

(a) A*(Z) = Ass R/Y”, large n. 

(b) A*(Z) = Ass R/F, large n. 

By [l] and [14], respectively, the sets (a) and (b) are well-defined finite 
sets of primes. Here, by 7 we mean the integral closure of the ideal J. Recall 
that 7 is the largest ideal K containing J such that JK” = K”+ ’ for some n. 
(In this case J reduces K.) See [ 1 l] for details. 

1.3. For an ideal I!& R, Y(Z), the ideal transform of Z, is the set of 
elements x in the total quotient ring of R such that I”x c R for some n. In 
what follows, we shall rely heavily upon the following result, due to J. 
Nishimura (see [12] and [ 131): 

THEOREM. For a regular ideal IS R, Y(Z) is a finite R-module if and 
only iffor each prime ideal P containing I, (Rp)* does not have a depth one 
prime divisor of zero. 
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A notion related to the ideal transform, is a sort of “relative transform” 
studied successfully by Schenzel in [21]: Given ideals Z, .ZC R, set 
I: (J)=Un(Z:J”)={x~R~J”xcZ for some n>l}. Of course 
I: (J) = (I: J”) for k sufficiently large, and one easily checks that .Z never 
consists of zero divisors module I: (J). 

1.4. Given an ideal ZE R, we shall write T= R[Zt] for the Rees ring of 
R with respect to Z, t an indeterminate. Both T and T[t-‘]-the extended 
Rees ring-appear frequently throughout the literature. Virtually any 
statement that can be made about T has a corresponding statement concer- 
ning T[t ‘1. In particular, since primes 9 E Spec T containing IT are in 
one-to-one correspondence with primes 9’ E Spec T[ t - ‘1 containing 
t ‘T[ t ‘1, it is straightforward to check that 9 E Ass T/Z”T if and only if 
9 E Ass T[tr ‘]/tr”T[tr ‘1 and that (T,)* has a depth one (minimal) 
prime divisor of zero if and only if ( T[tr’19,)* has a depth one (minimal) 
prime divisor of zero. Our preference for using T (instead of T[ t ~ ’ ] ) is 
twofold: First, T is sometimes called the “blowing-up” ring associated to Z 
and is frequently studied in geometry. Hence results about T lend them- 
selves to geometric interpretation. Secondly, and more to the point, we will 
have occasion to consider transforms of ideals in the Rees ring-a task 
made easier in the absence of negative grading. Finally, we shall frequently 
make use of the following well-known fact about T: If J, 3 J,? ... is a 
filtration of ideals such that I” s J, and J,,J, s Jn+m for all n and m, then 
S = C, J,, t” is a finite T-module if and only if there exists k > 0 such that 
PJ,= Jnfk for all n3 1 (see [6]). 

1.5. Elements (x,,..., xd) are said to generate an ideal of the principal 
class if height (x,,..., xd) R = d. Writing I= (x ,,..., xd) R, we have that 
x,,..., xd are analytically independent in R, for each prime PzZ. It follows 
that PT is prime for each such P, and that T/PTgR/P[X,,.., A’,], the 
polynomial ring in d-variables over R/P. 

1.6. The following condition on prime ideals will be called upon so fre- 
quently that we single it out here for ease of reference: Given a prime 
P E Spec R, we say that P satisfies condition ( # ) if and only if ( Rp)* has a 
depth one prime divisor of zero. The reader should consult [ 161 for the 
first fundamental results given about local rings whose maximal ideal 
satisfies ( # ). 

2. A”*(z) 

In this section we introduce the set of prime ideals A”*(Z). We show that 
for a regular ideal Z contained in the Noetherian ring R, PE a*(Z) if and 
only if there exists BE Spec T satisfying (# ) with 9 n R = P. We are 
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motivated by a theorem of Rat18 which states that P E A*(Z) if and only if 
there exists 9 CA*(&) with 9 n R = P (see [14]). Here $8 denotes the 
extended Rees ring T[u], U= t-l. By ([4], Lemmas 1.4 and 1.5) it follows 
that 9 E J*(z&) if and only if there exists a minimal prime divisor of zero 
q* &(9??)* such that P. (B&)*/q* EA*(U. (9%&)*/q*). BY (118, 
Theorem 2.121) this holds if and only if height 9. (929)*/q* = 1 (since 
(&?Y)*/q* is quasi-unmixed). In light of these remarks and 1.4, we may 
rephrase Rat183 result as follows: 

P E 6*(Z) if and only if there exists 9 E Spec T with 9 ?ZT such 
that (T,+.)* has a depth one minimal prime divisor of zero and 
YnR=P. 

We now define a*(Z): 

DEFINITION. Given an ideal ZsR and a prime PzZ, PEA*(Z) if and 
only if P E n A*(J), where the intersection ranges over ail ideals .Z such 
that I” 5 .Z c iii for some n. It follows from standard localization arguments 
that PEA”*(Z) if and only if PR,E a*(ZR,). It is easy to check that 
A*(Z) c A”*(Z) s A*(Z), because in [ 141 it is shown that l*(Z) & A*(Z). 

We will need the following lemmas to characterize d*(Z). 

2.1 LEMMA. Let R c S be a finite integral extension. Assume that R is a 
domain and that S is R torsion-free. Then P E Spec R satisfies (# ) if and 
only if there exists Q E Spec S satisfying ( # ) with P = Q n R. 

(Note: only the if part of the above statement requires that R be 
domain.) 

ProoJ Suppose Q E Spec S satisfies (# ) and P= Q n R. We may 
assume that R is local at P. It follows that S is semi-local with Jacobson 
radical J=QnQ,n ... nQr, where Q, Q2 ,..., Q, are the prime ideals of S 
lying over P. Because R c S is a finite integral extension, the completion S* 
of S in the J-adic topology is R* OS, where R* is the completion of R in 
the P-adic topology. On the other hand, since S is semi-local, 
s* E (s,)* @ ... @ (S,)*, so there exists a prime divisor of zero q* G S* 
with height Q*/q* = 1 (by assumption on Q). It follows that 
R*/q* n R* E S*/q* is an integral extension over a complete local domain. 
Since R*/q* n R* is Henselian ([lo]) it follows that S*/q* is local. That is, 
Q * is the only maximal ideal in S* containing q*. It follows from 
this that dim R*Jq* n R* = 1. Since P is regular, P* does not belong to 
Ass R*. Since q*n R* consists of zero divisors (by [lo, 18.123) and 
dim R*/q* n R* = 1, we have q* n R* E Ass R*, as desired. 
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Conversely, suppose that R c S is finite and P E Spec R satisfies ( # ). We 
may assume that R is local at P. By 1.3 we have that F(P), the ideal trans- 
form of P, is not a finite R-module. Letting J= Jacobson radical of S, it 
follows that F(PS) = F(J). If Y(J) were a finite S-module, then Y(PS) 
would be a finite S-module, and hence a finite R-module. But 
F(P) E F(PS), and this would be a contradiction. Therefore F(J) is an 
infinite S-module. Hence by 1.3 Q satisfies (# ) for some Q E Spec S con- 
taining J. Of course Q n R = P. 

2.2 LEMMA. Let P E Spec R and I G R be a regular ideal. Suppose I c P, 
and n > 0. Set T= R[It] and T’ = R[Z”t]. If there exists 9’~ Spec T such 
that $3” satisfies ( # ) and 9 n R = P, then there exists 9’ E Spec T’ satisfying 
(#) with YnR=P. 

Proof Following Ratliff in [ 151, we set A = R[l”t”]. Then there exists 
an isomorphism of A with T that fixes R. As in the proof of Theorem 2.5 
below, we may assume that R is a domain. Since T is integral over A and 
T = A [Zt], T is A-finite, so Lemma 2.1 applies. 

2.3 LEMMA. Let IC PE Spec R. Set T= R[Zt] and T’= Rp[Zpt]. Then 
there exists 9” E Spec T’ satisfying (# ) with 9’n R, = PR, if and only if 
there exists 9 E Spec T satisfying ( # ) with g n R = P. 

Proof Since localization commutes with formation of the Rees ring, the 
result follows. 

2.4 LEMMA. Let R z S be a faithfully flat extension of Noetherian rings. 
There exists P E Spec R satisfying ( # ) if and only if there exists Q E Spec S 
satisfying ( # ) with Q n R = P: 

Proof Suppose P E Spec R satisfies ( # ). We may localize at P, and by 
1.3, assume that F(P) is an infinite R-module. Therefore 
F(P) OR S = F(PS) is an infinite S-module. By 1.3 Q satisfies ( # ) for 
some Q E Spec S containing PS. Of course Q n R = P. The converse is 
similar. 

2.5 THEOREM. Let I E R be a regular ideal and P E Spec R with I G P. 
Then P E A”*(I) if and only if there exists 9’ E Spec T satisfying ( # ) with 
YnR=P. 

Proof By Lemma 2.3 and the definition of A”*(Z), we may assume that 
R is local at P. Now suppose PEA”*(Z). If PEA*(Z), then Ratliffs result 
implies that there exists 9 E Spec T such that (T,)* has a depth one 
minimal prime divisor of zero, and 9 n R = P. Therefore we may assume 
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that P$ A*(Z). Consequently, for all large k, Ik: (P) EF, so 
PE A*(Zk: (P)). If .Y does not satisfy (f ) for all 9’~ Spec T containing 
PT, then 1.3 implies that F(PT), the ideal transform of PT, is a finite T- 
module. Consider the ring S= 1, I”: (P) t”. The following facts imply 
S c_ T( PT): 

(i) (PT)‘= C, P-‘Z”t” for all j. 

(ii) If I”: (P) = (In: P”) then (PT)k. (p: (P)) t” c T. 

Therefore S is a finite T-module. It follows that there exists k’>O such 
that P+k’: (P) =r(Zk’: (P)) f or all n > 1. By choosing k and k’ large 
enough we may assume k = k’. Then easily Pk: (P) = (Zk: (P))” for all n, 
and since P E Ass R/(Zk: (P))” for all large n, we have a contradiction. It 
follows that 9 satisfies ( # ) for some Pp 2 PT, and 9 n R = P. 

Conversely, suppose there exists 9 E Spec T satisfying (# ) with 
!?’ n R = P. Let n > 0 and suppose I” G J c F. We need to show P E A*(J). 
Now P reduces J, therefore T’ = R[Jt] is a finite T” = R[l”t]-module. By 
Lemma 2.2 there exists 9” E Spec T” satisfying ( # ) with 9” n R = P. By 
Lemma 2.1 there exists b’ E Spec 7” satisfying ( # ) with 9’ n R = P. 
Because T G T’@ R* is a faithfully flat extension and T’O R* is R*[JR*r] 
and because PR* E A*(JR*) if and only if PEA*(J) (Lemma 2.4 and [ 10, 
18.11 I), we may assume that R is complete. Now ([ 161) implies that 
9” E A*(JT’). If we show that9’ is relevant (i.e., Jt @ S’) then ([14, 2.6.11) 
implies that 9’ n R = P E A *(J). 

Now, because .P’ satisfies ( # ) there exists q* E Ass( T;..)*, a depth one 
prime divisor of zero. Let q = q* n T’ and Q = q* n R. Then qE Ass T’, 
Q E Ass R and T/q = Rees ring of R/Q with respect to JR + Q/Q (since 
q = QR[t] n T’). Moreover (r,,)*/q( T>,)* g (Tb./qT&)* and q*/q( T”,)* 
is a depth one prime divisor of zero in this ring. If 9’ were irrelevant in T’ 
then the image of 9’ in T’/q’ would be irrelevant as well. Therefore we may 
assume further that R is a complete local domain. But then R is unmixed, 
so 7-y. is unmixed ([9,4.7]). Since 9’ satisfies (# ), this forces 
dim( 7”‘.)* = 1, so height .P’ = 1. Since the altitude formula holds between 
R and T’, this implies that height 9” = height P + trdeg, T’ - 
trdeg.,, T/P’. Assuming that 9’ were irrelevant, this would imply 
trdeg.,, T’/Y’ = 0. Hence we would have height 9” = 1 = height P + 1 - 0, 
so height P = 0. Since Z contains non-zero divisors, this is absurd. It follows 
that .FP’ is relevant, so PEA*(J) as desired. 

2.6 COROLLARY. Let R c S he a faithfully flat extension of Noetherian 
rings, and suppose I c R is a regular ideal. Then P E A”*(I) lj- and only if there 
exists QEA”*(IS) with Qn R = P. 

Proof: Immediate from Lemma 2.4 and Theorem 2.5. 
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2.7 COROLLARY. Let I G Jc R be regular ideals and suppose I reduces J. 
Then A”*(Z) = a*(J). 

Proof. I reduces J if and only if T’ = R[Jt] is a finite T = R[It]- 
module. Therefore the result follows from Lemma 2.1 and Theorem 2.5. 

2.8 COROLLARY. If R is local and R* has no embedded prime divisors of 
zero, then A*(Z) = a*(Z) for all ideals I with height I> 0. 

It is not difficult to show that if R is a local ring such that R* has no 
embedded prime divisors of zero and Q E Spec T, where T is a Rees ring, 
then ( Ta)* has no embedded divisors of zero. The result now follows from 
Ratliffs result above and Theorem 2.5. 

2.9 COROLLARY. Let I G R be a regular ideal. The asymptotic prime 
divisors of I fit the following scheme: 

(1) PEA*(I) $ and only if there exists relevant SE Ass T/IT with 
9 n R = P. 

(2) P E a*(I) if and only if there exists relevant 9’ E Ass TJIT such 
that 9 satisfies ( # ) and 9 n R = P. 

(3) P E A*(I) if’and only if there exist relevant 9 E Ass T/IT such that 
(T,,)* has depth one minimal prime divisor and 9 n R = P. 

Proof. (1) is given in [ 141, (2) follows from Theorem 2 and its proof 
(since IT,) is principal and (3) is explained above. 

3. ASYMPTOTIC R-SEQUENCES 

In this section we define asymptotic R-sequences and show that the 
length of all maximal asymptotic R-sequences coincides with min{dim R*/ 
Q* 1 Q*E Ass R*}, whenever R is local with completion R*. In fact, we 
shall assume throughout this section that R is a local ring with maximal 
ideal M and completion R*. 

Recall that elements x,,..., xd form an R-sequence if and only if for all 
ldi6d-l,xi+,$U {PIPEAssR/(x ,,..., xi) R}. If I is an ideal generated 
by an R-sequence, then it is well known that r/l”+ ’ is a free R/Z-module 
for all n. It follows easily from this that Ass R/Z” = Ass R/Z for all n (see [3, 
Exercise 3-1, 131). Therefore elements x, ,..., xd form an R-sequence if and 
only if for all ldi<d-1, x;+~$U {PIPEA*((x,,...,x,)R)}. This 
motivates the definition: 

3.1 DEFINITION. Elements x1 ,..., xd are said to form an asymptotic R- 
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sequence (ARS) provided xi+, # U (PI PE A”*((x,,..., xi) R)} for all 
ldi<d-1. An ARS x1 ,..., xd is said to be maximal if 
MEd*((xl,..., xd) R). Note that when d= 1 we are requiring that x1 be a 
non-zero divisor. 

3.2 PROPOSITION. Let R be a complete local ring and I E R an ideal. 
&pose that for all Q E Ass R, IR + Q/Q is an ideal of the principal class of 

height d. If there exists 9 E Spec T satisfying ( # ) with 92 IT, then there 
exists Q E Ass R such that P = .9 n R is minimal over I + Q. 

Proof Suppose 9~ Spec T and q* E Ass( T,)* is a depth one prime 
divisor of zero. Then arguing as in the proof of Theorem 2.5, we let 
q=q*nTand Q= q* n R and we reduce to the case that R is a complete 
local domain, as before (by noting that T/q is the Rees ring of R/Q with 
respect to ZR + Q/Q). Hence I is an ideal of the principal class of height d 
and we must show that P = 9 n R is minimal over I. But R is unmixed, so 
T9 is unmixed. Therefore if 9 satisfies (# ), we have height B = 1. But PT 
is a non-zero prime ideal contained in 9, so 9 = PT and 
trdeg,,, T/9’ = trdeg,,, T/PT= d (by 1.5). By the altitude formula ([6]): 

height .9 = height P + trdeg. T - trdeg,,, TIPT, so height P = d 
and P is minimal over Z, as desired. 

3.3 PROPOSITION. Let I c R be a regular ideal, Assume that for all 
Q* E Ass R*, IR* + Q*/Q* is an ideal of the principal class of height d. I f  
PEA”*(Z), then there exist primes P*, Q* G R* such that Q* E Ass R*, P* is 
minimal over IR* + Q* and P* n R = P. 

Proof. By Theorem 2.5 there exists 9 E Spec T with 92 IT, 9 satisfies 
( # ) and 9 n R = P. By Lemma 2.4 there exists @ E Spec p satisfying ( # ) 
with @n T= 9, where ?= T OR R*, a faithfully flat extension of T. 
Noting that ? is the Rees ring of R* with respect to IR*, we may apply 
Proposition 3.2 to finish the proof (by taking P* = @ n R*). 

3.4 THEOREM. Elements x1 ,..., xd in R form an ARS tf and only iffor all 
Q* E Ass R* it holds that (x1 ,..., xd) R* + Q*/Q* is an ideal of the principal 
class of height d. It follows that any permutation of an ARS remains an ARS. 
Moreover, the lengths of all maximal ARS’s are the same and may be com- 
puted as 

min{dim R*/Q* 1 Q* EASS R* >. 

Proof: If the condition holds for all Q* E Ass R*, then height 
(xi ,..., xi) R* + Q*/Q* = i for all 1~ i< d and Q* E Ass R*, because com- 
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plete local domains are catenary. It follows from Proposition 3.3 that 
XI ,,..> xd form an ARS. 

Conversely, suppose that for some i+ 1 <d, there exist primes P*, 
Q”cR* with Q* E Ass R*, P* minimal over (x,,..., xi) R* + Q* and 
X ,+,EP=P*~R. Let 1=(x ,,..., xi). Then for any n > 0 and ideal J such 
that P’R c JR c P’R, it holds that P* is minimal over JR* + Q*. By ([7, 
Proposition 1.131) it follows that P* EA(JR*). Faithful flatness implies 
that P*nR=PEA*(J) ([lo, l&11]). Hence PEA”(Z) and x,,...,x,+, do 
not form an asymptotic R-sequence. 

That any permutation of an ARS remains an ARS is now clear, as is the 
inequality min{dim R*/Q* 1 Q* E Ass R*} 3 length of any maximal ARS. 
The reverse inequality follows from Proposition 3.3. 

We now characterize unmixed local rings in terms of asymptotic R- 
sequences. 

3.5 THEOREM. Let R be a local ring. The following are equivalent. 

(i ) R is unmixed. 

(ii) For each ideal of the principal class I and PE d*(Z), it holds that 
height P = height I. 

(iii) Every system qf parameters forms an ARS. 

(iv) Some system qf parameters,forms an ARS. 

Proqf: (i) implies (ii). Suppose that R is unmixed. Let I be an ideal of 
the principal class of height d and PEA”*(I). Theorem 2.5 implies there 
exists 9 E Spec T satisfying ( # ) with 9 n R = P. Because R is unmixed, T9 
is unmixed, so height 9 = 1. Hence PT = 9 and the altitude formula 
implies height P = d. 

(ii) implies (iii). If (ii) holds then there certainly exists an ARS of 
length = dim R, so R is unmixed by Theorem 3.4. Like catenary local 
domains, unmixed local rings have the property that if I= (x,,..., xd) R is 
an ideal of the principal class, then (x, ,..., xi) R is an ideal of the principal 
class for each 1 6 id d. (iii) now follows from (ii). 

(iii) implies (iv). Obvious. 
(iv) implies (i). Immediate from Theorem 3.4. 
In [2] it is shown that if x,,..., xd in R satisfy the condition given in 

Theorem 3.4, then for all n > 1 there exists an i such that xi,..., XL are M”- 
independent (i.e., any form f (x) vanishing at x; ,..., XL must have coefficients 
in M”). It follows from the above that if R is unmixed, that this holds for 
any x, ,..., xd in R generating an ideal of the principal class. We record this 
as a corollary. 
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3.6 COROLLARY. Let R be an unmixed local ring and suppose x,,..., xd 
generate an ideal of the principal class of height d in R. Then for all n 2 1 
there exists an i such that xi,,..., xi are M”-independent. 

Proof It follows from Theorems 3.4 and 3.5 that for all Q* E Ass R* it 
holds that height ((xi ,..., xd) R* + Q*/Q*) = d. Now Theorem 1, [2] 
finishes the proof. 

4. A PROBLEM OF P. SCHENZEL 

In [21] Schenzel was able to characterize unmixed local rings by com- 
paring the topologies defined by Z and Z”: (M), n > 1. In particular, he 
proved that a local ring (R, M) is unmixed if and only if for each ideal Z of 
the principal class with height Z-C dim R, Z”: (M), n > 1, defines the I-adic 
topology. Motivated by the classical paper [20] of Rees, he posed the 
following problem. 

PROBLEM (cf. [21]). If (R, M) is an unmixed local ring for which ideals 
ZG R does it hold that S=C, Z”: (M) t” is a finite T-module? 

We shall answer this question using our work from sections two and 
three. 

4.1 THEOREM. Let (R, M) be a local ring. The following are equivalent: 

(i) R is unmixed, 

(ii) For each ideal of the principal class Z, with height Z< dim R, S is 
a finite T-module. 

(iii) For each ideal Z with analytic spread Z-C dim R, S is a finite T- 
module. 

ProoJ (i) implies (ii). Suppose that R is unmixed and Zc R is an ideal 
of the principal class with height Z= d < dim R. If there exists 9 E Spec T 
such that 9’ satisfies (# ) and 9’n R = M, then because T9 is unmixed, 
height 9’ = 1, MT= 9 and the altitude formula implies height M = d, a 
contradiction. Therefore by 1.3 Y(MT) is a finite T-module. Since 
S c Y(MT), the result follows. 

(ii) implies (i). Suppose that (ii) holds and R is not unmixed. Let 
x1 ,..., xd be a maximal ARS and write Z= (xi ,..., xd) R. Then ME A”*(Z) and 
d< dim R by Theorem 3.5. By assumption S is a finite T-module, so there 
exists k > 0 such that Z”+k: (M) = Z”(Zk: (M)) for all n 2 1. It follows that 
nz7 (M)=O. 

On the other hand, by Theorem 3.4 and Proposition 3.3 there exists 
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Q* E Ass R* such that MR* is minimal over IR* + Q*. Now suppose 
x E R* is such that for all n 2 1 there exists j > 0 (depending on n) with 
xMiR* c I”R* + Q*. Then xyM’R* E PR*, where Q* = (O:,. y). Then xy E 
0, I”R*: (MR*) = 0, so x E Q*. Therefore we may assume that R is a 
local domain with an M-primary ideal Z such that n, I”: (M) = 0. Because 
Min G I” for some j, all n, 1 E n, Z”: (M) = 0, and this is a contradiction. 

(i) implies (iii). Recall that the analytic spread of Z equals 
trdeg,,, T/MT. Now it does no harm to assume that R/M is infinite. 
Hence, by the Northcott-Rees theory of reductions [ 111, there exists a 
minimal reduction .Z of Z generated by d analytically independent elements 
(d= analytic spread of I). Let T’= R[Jt] and S’=C, J”: (M) t”. Since 
T’/MT’z R/M[X, ,..., X,], the polynomial ring in d variables over R/M, 
MT’ is a prime ideal and the arguments employed in the proof of (i) 
implies (ii) show that S’ is a finite T’ module when d < dim R. 

Now, because J reduces Z, there exists k > 0 such that Z” + k = SZk for 
all ~31. Therefore 
(M) tnik 

S=C,I”: (M) t”=CrzOli: (M) ti+C,“=lJ”Zk: 
sC;=,Z’: (M) t’+S’.tkz ~,“=, Ii: (M)t’+ T[S’] tk. Since S’ 

is a finite T-module and T is a finite T-module, T[S’] is a finite T- 
module. It follows that S is contained in a finite T-module, so the result 
holds. 

(iii) implies (i). Because an ideal of the principal class is generated by 
analytically independent elements, this follows from (ii) implies (i). 

5. CONCLUDING REMARKS 

1. Ideally one would like to have a closure operation “ -” on ideals, 
similar to integral closure, so that the sets Ass R/F would take the value 
d*(Z) for all large n. This would allow for a theory of asmptotic R-sequen- 
ces and unmixed local rings that would be entirely analogous to that of 
asymptotic (prime) sequences and quasi-unmixed local rings developed in 
[S, 7, 191. In the local case 

J= (-j q&JR* + Q*/Q*), Q* minimal 

where qe8: R + R*/Q* is the natural map. This suggests trying 

s= (-) q$(JR* + Q*/Q*), Q* E Ass R*; 

however, at this time, there does not appear to be any natural way of 
expressing this ideal in terms of properties intrinsic to J and R. 
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2. It should be mentioned that some of our results are similar to 
those obtained independently by the authors in [8]. In [S], McAdam and 
Ratliff introduce the set A,(Z) = {P?ZI (Rp)* has a prime divisor of zero 
Q*, with P(R,)* minimal over Z(R,)* + Q*}. Using this set of primes they 
define the notion of essential sequence. Now, in general A,(Z) G A*(Z) and 
the containment may be proper. Moreover, x*(Z) need not be contained in 
A,(Z). If, however, Z is an ideal generated by an asymptotic R-sequence, 
then one can show l*(Z) c A,(Z) = d*(Z)sA*(Z). It follows that 
asymptotic R-sequences are essential sequences and conversely. A ,(I) 
appears to be an important set of primes and the interested reader is urged 
to consult [8] for further details. 

3. Condition (iii) in Theorem 4.1 cannot be weakened to 
height I < dim R. This can be seen as follows: Let R be an unmixed local 
ring and ZG R an ideal with height Z < dim R and analytic spread 
I= dim R. By ([7, Proposition 4.11) MEA*(Z) c A”*(Z). Suppose S were a 
finite T-module. Then: 

(i) There exists k > 0 such that (Z”: (M))” = Zk”: (M) for all n > 1 
(as in the proof of Theorem 2.5). 

(ii) S G T= integral closure of T= C, Ft’. 

The second condition implies I” c I”: (M) EI” for all n 2 1. In par- 
ticular, for k as in (i), Zk G Zk: (M) ~3, so ME A*(Zk: (M)). That is, for 
all large n, M consists of zero divisors modulo (Zk: (M))” = Zk”: (M), a 
contradiction. 

4. Schenzel’s problem has an integral closure analogue. The same cir- 
cle of ideas used in the proof of Theorem 4.1 may be applied to prove the 
following: 

THEOREM. Let (R, M) be a local ring. The following are equivalent: 

(i) R is quasi-unmixed. 

(ii) For each ideal of the principal class Z, with height I< dim R, 
SC T. 

(iii) For each ideal Z with analytic spread I< dim R, SC T. 

Only the following modifications in the proof of Theorem 4.1 are 
required: 

(a) One works with minimal primes in the completion, rather than 
all prime divisors. 

(b) One uses A*(Z) rather than A”*(Z). 
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(c) One invokes the integral closure analogue of Nishimura’s result: 
Namely, that the transform of an ideal I is an integral extension if and only 
if for all PzZ, (Rp)* does not have a depth one minimal prime divisor of 
zero. 
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